Corrections

for

A Course in Point Set Topology

Springer UTM

John B Conway George Washington University

This is a list of corrections for my book A Course in Point Set Topology published in 2013 by Springer-Verlag. The following mathematicians have helped me to compile this list. Fred Linton, Yuxi Liu.

I would appreciate any further corrections or comments you have.

Notes in **boldface** are not part of the correction.

PageLine	From	То
10	Add the following as Exercise 14.	(14) If (X, d) is a separable metric space and
		$Y \subseteq X$, show that (Y, d) is a separable
		metric space.
12 -13	If $A \subseteq X$ and	If $A \subseteq X$, $A \neq \emptyset$, and
29 12	Delete Exercise 5. It's false.	
35 - 17	copy of \mathbb{R}	copy of $[0, 1]$
35 -14	$X = \mathbb{R} \times I$	$X = [0, 1] \times I$
35 -12	d(x,y) = 1	d(x,y) = 2
35 -11	$\mathbb{R} \times I$	$[0,1] \times I$
$38 \ 4$	of closed	of distinct closed
$44\ 17$	if every	if $\mathcal{B} \subseteq \mathcal{T}$ and every
46 -3	ordered set and \mathcal{S}	ordered set such that for x either there is
		a distinct y with $x \leq y$ or there is a
		distinct z with $z \leq x$ and
48 -19	every A	every B
66 -9	onto $\phi(X_i)$	onto $\phi(X_i)$
67 9	Delete the last sentence and substitute the following. (a) If I is countable and each X_i is separable, show that X is separable. (b) If X	
	is separable, then each X_i is separable.	
<u></u>		

5 Delete the first sentence of the proof that (a) and (d) are equivalent. What remains is a proof that (a) implies (d). We need a proof that (d) implies (a). Here it is.

According to the preceding lemma, (d) says that the topology on X, \mathcal{T} , is the same as the weak topology \mathcal{T}_c . So we want to prove that X is completely regular. Let F be a closed subset of X and let $x \in X \setminus F$. By Proposition 2.6.2 there are continuous functions g_1, \ldots, g_n from X into \mathbb{R} and positive numbers $\delta_1, \ldots, \delta_n$ such that

$$\bigcap_{j=1}^{n} g_j^{-1}(\{t \in \mathbb{R} : |t - g_j(x)| < \delta_j\}) \subseteq X \setminus F$$

Replacing each g_j by $k_j(y) = (\delta_j)^{-1} |g_j(y) - g_j(x)|$, this means that

$$\bigcap_{j=1}^{n} k_j^{-1}\{(-1,1)\} \subseteq X \setminus F$$

If $f(y) = \min\{1, k_1(y), \dots, k_n(y)\}$, then $f: X \to [0, 1]$ is continuous, f(x) = 0, and f(y) = 1 for all y in F. It follows that X is completely regular.

88	-3	X. The	X. For simplicity assume no proper subcover of
			$\{G_1,\ldots,G_{n+1}\}$ covers X. The
92	-10	$f^eta \circ au$	$f^eta\circ au=f$
92	-1	$f^{Z}[\omega(\sigma(x))]$	$f^eta[\omega(\sigma(x))]$
93	2	In the diagram replace f^Z by f^β	
98	19	Add the following before Proposition 3.5.11.	
		Recall the metric $\rho(f,g)$ (3.1.1) defined on $C_b(X)$	
101	-8	forrest	forest
101	-7	3.5.11	3.3.11
102	11	$\leq 1.$ Let	$\leq 1.$ (Corollary 3.3.11 requires that X be normal.
			How can you bypass this in the present situation?) Let
103	11	to generate	(Exercise 1.1.14) to generate
103	-2	$\epsilon/2$	$\epsilon/4$
104	-20	$K_n = \{x \in X : \phi_k(x) \ge 1/n \dots\}$	$K_n = \{x \in X : \text{there is } k, 1 \le k \le n, \text{with } \phi_k(x) \ge 1/n\}$
105		Delete Exercise 14 and renumber the following exercises. It is the same	
		as Exercise 1.5.6.	

108	2	$\{(a,b]:a,b\ldots\}$	$\{(a,b]:a,b\ldots\}\cup\{0\}$	
108	-19	By (c), $x_n \to x$.	Let $a_n \in F \cap (x_n, x_{n+1})$. By (c), $a_n \to x$.	
109	-15	We assume claim.	We establish the following claim.	
114	5	$G \cap X_n \neq 0$	$G \cap X_n \neq \emptyset$	
114	3	I am not sure this corollary is true. The proof has a gap in the given		
		proof where it is assumed that each \mathcal{A}_n is locally finite in X.		